On power integral bases for certain pure number fields defined by $x^{18}-m$
نویسندگان
چکیده
Let $K={\mathbb Q}(\alpha)$ be a number field generated by complex root $\alpha$ of monic irreducible polynomial $f(x)=x^{18}-m$, $m\neq \mp 1$, is square free rational integer. We prove that if $ m \equiv 2$ or $3 {\rm(mod }{ 4})$ and $m\not\equiv 1 9})$, then the $K$ monogenic. If $m\equiv not
منابع مشابه
On Power Bases in Number Fields
We survey the problem of existence and computation of power bases in number fields.
متن کاملIntegral Bases for Number Fields Arising from Circulant Matrices
In this paper we compute integral bases for some algebraic number fields. Mathematics Subject Classification: 11R04, 11R09, 11S15
متن کاملComputing all power integral bases in orders of totally real cyclic sextic number fields
An algorithm is given for determining all power integral bases in orders of totally real cyclic sextic number fields. The orders considered are in most cases the maximal orders of the fields. The corresponding index form equation is reduced to a relative Thue equation of degree 3 over the quadratic subfield and to some inhomogeneous Thue equations of degree 3 over the rationals. At the end of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Commentationes Mathematicae Universitatis Carolinae
سال: 2022
ISSN: ['0010-2628', '1213-7243']
DOI: https://doi.org/10.14712/1213-7243.2022.005